Donor-acceptor systems: energy transfer from CdS quantum dots/rods to Nile Red dye.
نویسندگان
چکیده
We demonstrate strong evidence of shape-dependent efficient resonance energy transfer between CdS quantum dots (QDs) and quantum rods (QRs) (donor) to Nile Red dye (acceptor). We also report a simple solution-based method for the preparation of high quality CdS QDs and CdS QRs at relatively low temperature. The observed quenching of PL intensities are 78.8 % and 63.8 % for CdS QDs and QRs, respectively in the presence of Nile Red dye. The calculated energy-transfer efficiencies are 45 % and 19 % from QDs and QRs to dyes, respectively. The energy transfer varies with changing the shape of the nanoparticles. The estimated Förster distances (R(0)) are 37.8 and 33.8 A for CdS QDs and QRs, respectively. In the present study, the estimated distances (r) between one donor and one acceptor are 39.1 and 43.1 A for QDs and QRs, respectively, using the efficiency of Förster resonance energy transfer (FRET) which depends on the inverse sixth power of the distance of separations between one nanocrystal and one dye molecule. Considering single donor and multiple acceptors interactions, the calculated average distances (r(n)) between the donor and acceptor are 47.7 and 53.9 A for QD's and QR's, respectively. The steady-state and time-resolved spectroscopic analysis of nanoassemblies confirm the formation of one donor and multiple acceptors.
منابع مشابه
Electrochemiluminescence energy transfer-promoted ultrasensitive immunoassay using near-infrared-emitting CdSeTe/CdS/ZnS quantum dots and gold nanorods
The marriage of energy transfer with electrochemiluminescence has produced a new technology named electrochemiluminescence energy transfer (ECL-ET), which can realize effective and sensitive detection of biomolecules. To obtain optimal ECL-ET efficiency, perfect energy overlapped donor/acceptor pair is of great importance. Herein, we present a sensitive ECL-ET based immunosensor for the detecti...
متن کاملFluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors.
We used luminescent CdSe-ZnS core-shell quantum dots (QDs) as energy donors in fluorescent resonance energy transfer (FRET) assays. Engineered maltose binding protein (MBP) appended with an oligohistidine tail and labeled with an acceptor dye (Cy3) was immobilized on the nanocrystals via a noncovalent self-assembly scheme. This configuration allowed accurate control of the donor-acceptor separa...
متن کاملEnhanced dipole-dipole interaction of CdSe/CdS nanocrystal quantum dots inside a planar microcavity
The energy transfer ET dynamics of closely packed CdSe/CdS nanocrystal quantum dots NQDs embedded in a planar microcavity were studied by using time-resolved photoluminescence measurements. An increase of 20% was observed in the rates of ET from smaller to larger NQDs in the microcavity as compared with those measured in free space. This behavior was attributed to the enhanced dipole-dipole int...
متن کاملComplete Quenching of CdSe Nanocrystal Photoluminescence by Single Dye Molecules
Much of the current research into semiconductor nanocrystal (NC) photochemistry has focused on their potential application as biological reporters, as light harvesting elements in solar energy conversion systems, or as tunable emitters in light-emitting diodes (LEDs). These applications all necessitate energy or charge-carrier transfer between semiconductor materials and molecular species. For ...
متن کاملNovel multistep BRET-FRET energy transfer using nanoconjugates of firefly proteins, quantum dots, and red fluorescent proteins.
Sequential bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET) from firefly luciferase to red fluorescent proteins using quantum dot or rod acceptor/donor linkers is described. The effect of morphology and tuned optical properties on the efficiency of this unique BRET-FRET system was evaluated.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chemphyschem : a European journal of chemical physics and physical chemistry
دوره 9 14 شماره
صفحات -
تاریخ انتشار 2008